Parental Consent: My child has permission to attend the UW-Sheboygan Engineering Boot Camp. I also give my permission for emergency medical treatment to be given if I cannot be reached. I hereby release UW-Sheboygan and all of its employees from any liability for injury or damage or loss of personal property which might occur while my child is enrolled in the Engineering Boot Camp. I also give permission for my child to be photographed while in camp with the understanding that these photographs may be used to illustrate and promote future UW-Sheboygan programs.

Parent/Guardian Signature: ____________________________

Phone: _______________________________________

Email: _______________________________________

CAMP DETAILS
Who is eligible? Junior and Senior high school students interested in learning more about engineering and those who wish to pursue engineering in college.

When? June 20–24, 8 a.m.–3 p.m.

Where? UW-Sheboygan, Plastics Engineering Company Center for Engineering Studies, Room 6012

Cost? $499 for college credit OR $299 for non-credit

Instructor: Guy Campbell, Mechanical Engineering Lecturer at UW-Sheboygan and UW-Platteville. Campbell brings a wealth of industry experience to the classroom, most recently as a manufacturing engineer and quality manager at North American Clutch in Milwaukee. He has also worked as a senior manufacturing engineer at Harley Davidson and as a process leader at Mercury Marine. Campbell completed a MS degree in Manufacturing Engineering at GMI Engineering and Management Institute in Flint, MI as well as coursework for a PhD in Mechanical Engineering at Marquette University.

For more information, contact Continuing Education at (920) 459-6617 or shb-ce@uwc.edu.
Engineering Boot Camp!

This camp offers a challenging, hands-on introduction to various engineering disciplines and is designed to help prepare students who wish to pursue engineering studies in college. Students will learn about the exciting field of engineering from local engineers and students of engineering, will participate in engineering design projects, and will visit local businesses to view engineers at work.

Students who successfully complete this boot camp may opt to receive one (1) college credit.

Students will learn about…

CIVIL ENGINEERING
What would it feel like to have the expertise to build a school that could withstand an earthquake, a road system that puts an end to chronic traffic jams, or a sports stadium that offers everyone a great view? As a civil engineer, your job would be to oversee the construction of the buildings and infrastructure that make up our world’s highways, skyscrapers, railways, bridges, and water reservoirs, as well as some of the most spectacular and high-profile of all engineering feats—think of the world’s tallest building, the towering Burj Khalifa in Dubai, or the Chunnel, the thirty-one-mile-long tunnel beneath the English Channel. Civil engineers are fond of saying that it’s architects who put designs on paper, but it’s engineers who actually get things built.

MECHANICAL ENGINEERING
As a mechanical engineer, you might develop a bike lock or an aircraft carrier, a child’s toy or a hybrid car engine, a wheelchair or a sailboat—in other words, just about anything you can think of that involves a mechanical process, whether it’s a cool, cutting-edge product or a life-saving medical device. Mechanical engineers are often referred to as the general practitioners of the engineering profession, since they work in nearly every area of technology, from aerospace and automotive, to computers and biotechnology.

ELECTRICAL ENGINEERING
As an electrical engineer, you might work on robotics, computer networks, wireless communications, or medical imaging areas that are at the very forefront of technological innovation. As an electrical engineer, you might work on robotics, computer networks, wireless communications, or medical imaging areas that are at the very forefront of technological innovation.

INDUSTRIAL/MANUFACTURING ENGINEERING
Industrial engineers determine the most effective ways to use people, machines, materials, information, and energy to make a product or to provide a service. Sometimes they are called “efficiency experts.” Manufacturing means making things, and manufacturing engineers direct and coordinate the processes for making things from the beginning to the end. As businesses try to make products better and at less cost, they turn to manufacturing engineers to find out how. Manufacturing engineers work with all aspects of manufacturing from production control to materials handling to automation. The assembly line is the domain of the manufacturing engineer. Machine vision and robotics are some of the more advanced technologies in the manufacturing engineers’ toolkit.

MATERIALS ENGINEERING
Materials scientists and engineers continue to be at the forefront of all of these areas of science, as well as many others. Materials science and engineering influences our lives each time we buy or use a new device, machine, or structure. The definition of the academic field of Materials Science & Engineering stems from a realization concerning every application of materials: it is the properties of the material that give it value. A material may be chosen for its strength, its electrical properties, resistance to heat or corrosion, or a host of other reasons, but they all relate to properties.

For an opportunity to receive a scholarship for this program, complete the Scholarship application at http://sheboygan.uwc.edu/continuing-ed